On Finite Energy Solutions of the Kp - I Equation

نویسندگان

  • H. KOCH
  • N. TZVETKOV
چکیده

We prove that the flow map of the Kadomtsev-Petviashvili-I (KP-I) equation is not uniformly continuous on bounded sets of the natural energy space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Regularity Solutions for the Kadomtsev-petviashvili I Equation

In this paper we obtain existence and (suitable) uniqueness and continuous dependence for the KP-I equation for finite time and small data in the intersection of the energy space and a natural weighted L space.

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Absence of sufficiently localized traveling wave solutions for the Novikov-Veselov equation at zero energy

Note also that when E → ±∞, equation (1.1) transforms into another renowned (2 + 1)dimensional analog of KdV, Kadomtsev-Petviashvili equation (KP-I and KP-II, respectively). In addition, a dispersionless analog of (1.1) at E = 0 was derived in [KM] in the framework of a geometrical optics model. Equation (1.1) is contained implicitly in [M] as an equation possessing the following representation...

متن کامل

Canonical Variables for multiphase solutions of the KP equation

The KP equation has a large family of quasiperiodic multiphase solutions. These solutions can be expressed in terms of Riemann-theta functions. In this paper, a finite-dimensional canonical Hamiltonian system depending on a finite number of parameters is given for the description of each such solution. The Hamiltonian systems are completely integrable in the sense of Liouville. In effect, this ...

متن کامل

The KdV/KP-I Limit of the Nonlinear Schrödinger Equation

Abstract We justify rigorously the convergence of the amplitude of solutions of Nonlinear-Schrödinger type Equations with non zero limit at infinity to an asymptotic regime governed by the Kortewegde Vries equation in dimension 1 and the Kadomtsev-Petviashvili I equation in dimensions 2 and more. We get two types of results. In the one-dimensional case, we prove directly by energy bounds that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006